
A Paranoid Perspective
of an Interpreted

Language

Dominique Brezinski
Black Hat, Inc.

Goals

Understand what is different about auditing
software written in high-level, interpreted
languages versus C/C++

Review several vulnerabilities in the Ruby
language implementation to better understand
what vulnerabilities in high-level languages look
like

High-level Programming Languages
We are focusing on issues associated with the use
of interpreted, object-oriented languages like
Ruby, Python, C# and Smalltalk, though many of
the issues apply equally to other interpreted
languages like Perl.

Ruby is used for all the examples, but I am not
picking on Ruby specifically--I just like Ruby and
use it all the time. The issues presented here apply
to all similar languages, though the bugs shown
are specific to Ruby.

Why?
Even though developers do not have to worry
about memory manipulation and potential buffer
overflows directly in their code when writing in
higher-level languages, using higher-level languages
alone does not mean the resulting software will be
secure. There are still many ways to shoot yourself
in the foot when writing software in high-level
languages, as well as deep dependencies in libraries
and interpreters that can be attacked under
certain conditions.

Interpreter = a complex piece of software

• The interpreters for most of the languages
are fairly complex pieces of software,
generally written in C

• The standard libraries, which are what make
many of these languages very efficient for
common programming tasks, are also
generally written in C

• The developers of language interpreters are
better than average developers, but that
does not mean there are no mistakes

Example: pack.c
static void
encodes(VALUE str, char * s, long len, int type)
{
 char *buff = ALLOCA_N(char, len * 4 / 3 + 6); /* len > 1GB will cause int overflow and small
allocation */
 long i = 0;
 char *trans = type == 'u' ? uu_table : b64_table;
 int padding;

 if (type == 'u') {
 buff[i++] = len + ' ';
 padding = '`';
 }
 else {
 padding = '=';
 }
 while (len >= 3) { /* bounded by len, but probably not exploitable due to stack memory
constraints */
 buff[i++] = trans[077 & (*s >> 2)];
 buff[i++] = trans[077 & (((*s << 4) & 060) | ((s[1] >> 4) & 017))];
 buff[i++] = trans[077 & (((s[1] << 2) & 074) | ((s[2] >> 6) & 03))];
 buff[i++] = trans[077 & s[2]];
 s += 3;
 len -= 3;
 }...

Example: array.c (found by John McDonald)
 case 3:
 [snipped]
 len = NIL_P(arg2) ? RARRAY(ary)->len - beg : NUM2LONG(arg2); /* len is from method argument */
 break;
 }
 rb_ary_modify(ary);
 end = beg + len; /* end is derived from len */
 if (end > RARRAY(ary)->len) { /* when a long len is specified, this will be true */
 if (end >= RARRAY(ary)->aux.capa) { /* this will be true also */
 REALLOC_N(RARRAY(ary)->ptr, VALUE, end); /* size passed to realloc() is sizeof(VALUE) *
end--WRAP*/
 RARRAY(ary)->aux.capa = end;
 }
[snipped]
 if (block_p) {
[snipped]
 }
 else {
 p = RARRAY(ary)->ptr + beg;
 pend = p + len; /* derived from len, which is now much longer than memory allocated */
 while (p < pend) {
 p++ = item; / HEAP OVERFLOW! */
 }
 }
 return ary;
}

Lesson One

The interpreters and binary libraries need to be
audited just like any other sensitive program.
Unlike most programs, all input should be
viewed as potentially hostile, since the code
being evaluated could be untrusted.

Note: this audit is separate from verifying that
the language implementation is correct.

Example: Breaking Safe (example by Matz)

#!/usr/bin/env ruby
def safe_eval(str)
 Thread.start {
 $SAFE=4
 eval str
 }.value
 end
begin
 safe_eval("puts :foo") #=> security error--no direct output allowed when $SAFE == 4
rescue
 puts “Caught exception”
end
result = safe_eval(<<-END)
 o = Object.new
 def o.to_s #=> singleton method to_s, which is not being marked TAINTED
 puts :foo
 end
 o
END
puts result #=> o.to_s gets called by puts when object is not a string

Lesson Two
Execution restrictions within languages are good
features but are very difficult to implement
correctly. It takes time and very knowledgeable
people reviewing the implementations before
such features can be trusted. If an application
needs a high level of security, trusting semantic
restrictions in languages to be the basis of the
application security is not wise. Use them, but do
not rely on the security of the feature. This holds
true for Ruby’s safe levels, Perl’s Safe.pm, and all
the rest.

Example: XML-RPC (publicly disclosed)

• Any application that provided XML-RPC
functionality using XMLRPC.iPIMethods
allowed remote command execution.

• The source of the vulnerability was included
methods exported from all ancestors

Example Continued

The diff of the fix:

--- ruby-1.8.2/lib/xmlrpc/utils.rb.orig 2003-08-15 02:20:14.000000000 +0900
+++ ruby-1.8.2/lib/xmlrpc/utils.rb 2005-07-01 16:33:19.243521736 +0900
@@ -138,7 +138,7 @@

 def get_methods(obj, delim=".")
 prefix = @prefix + delim
- obj.class.public_instance_methods.collect { |name|
+ obj.class.public_instance_methods(false).collect { |name|
 [prefix + name, obj.method(name).to_proc, nil, nil]
 }
 end

Example: server.rb
Exception handling is a great language feature, but
it is also easy to forget to reset aspects of
program state when exceptions are caught. Also,
understanding what and when exceptions can be
thrown is not always easy. A common mistake is
to put in a catch-all exception handler with only
the expectation that certain classes of exceptions
will occur. Then, unbeknownst to the developer, a
library used will raise an exception of a different
class that should not have been caught locally, that
will get caught, and program state will change in
an unexpected way. Security issues can result.

Lesson Three
Building on other code, either through OO
inheritance or standard libraries, is good for many
reasons, but it is also a potential source of many
security problems. There may be functionality present
in the class ancestors or library that must not be
included in the application and needs to be
overridden or excluded, but the developer needs to
know the functionality is present in the first place.
Likewise, exception raised in libraries need to be well
understood. Audits often need to extend into the
programs dependencies, such as standard and third-
party libraries.

Automated Static Source Analysis

• Not nearly as useful for interpreted languages,
since implementation security issues tend to be
logic flaws, code exclusion or execution-time
dependent rather than dangerous API usage etc.

• Interpreted languages tend to have more functional
density per kloc, therefore less code per
application, so manual review is more feasible and
higher return

• Modified dependency analyzers and class browsers
can be useful tools for directing manual reviews

Binary Analysis

• Can (should) be used on interpreter and binary
libraries

• No binary for the application developed in the
interpreted language, so binary analysis is not
applicable to the end application

Dynamic Analysis
• It is possible to use the introspective features

of these languages to list key information like
public methods of classes and other security
relevant information during execution

• Build mix-in modules that can provide generic
analysis (class attributes and methods), while
others would be specific to the application
(similar to debug-only code)

• Could probably be based off of existing
developer tools

Manual Code Review

Code review is probably the best tool we currently
have to evaluate the security of an application
written in an interpreted language. Defining a
process to determine the scope of the code review
is beneficial.

Review Scope
• Determine library dependencies, so they can

be included in the audit

• Determine the class lineage (inheritance) for
all classes used in the application, so the
parent classes and the inherited functionality
can be included in the audit

• As the review progresses, certain portions
of the interpreter should be included in the
audit based on the language features used
(i.e. reflection)

Pitfalls of Inheritance
Having a feature-rich set of base classes greatly
decreases the amount of code a developer needs to
write to implement a given set of features, since many
features can be implemented by creating new classes
that inherit a great deal of functionality. However, the
resulting code will possibly implement more
functionality that is not secure. It is often necessary to
over-ride unnecessary and/or unwanted functionality
inherited from parent classes. Remember the XML-
RPC vulnerability? In programs that make use of OO
language features, auditors should verify only necessary
functionality is inherited from parent classes.

Reflection Point One
Reflection is the ability to dynamically change the
structure of the executing program, for-instance, by
adding methods to a class based on the execution
environment, configuration changes, and/or user
input. Understanding when and how reflection is
used in a program can be important from a security
perspective. For instance, are reflectively created
method names derived from attacker controllable
input? If so, are protections in place to ensure that
existing, sensitive methods cannot be redefined due
to malicious input?

Reflection Point Two

Normally many parts of the interpreter are not
subject to abuse by a user of the program. If code is
dynamically generated or changed based off of user
input, then normally unaccessible parts of the
interpreter could be subject to attack (i.e. parser,
introspective methods).

Sandboxes for Untrusted Code
Any attempts to execute untrusted code in
sandboxes should be examined very carefully. If an
attacker can generate code that gets executed in a
sandbox, both language implementation of
the sand-boxing mechanisms and
interpreter implementation are subject to
attack. Earlier examples demonstrated problems
with both language security mechanism and
interpreter implementation. There will be more. If a
program relies on sandboxes for safety, then the
interpreter code needs to be included in the audit.

What does this all mean?
• Programs written in all languages can have exploitable

issues.

• While programming at a higher level of abstraction
removes certain lower level vulnerabilities from the
general case, it does not mean the vulnerabilities are
completely eradicated

• Programs that need very high levels of security cannot
rely on the implementation language to deliver assurance

• We need more knowledge and better analysis tools for
doing security audits of programs written in interpreted
languages

